• Skip to primary navigation
  • Skip to main content
  • Skip to footer
COVID19-NMR

COVID19-NMR

  • About
    • Mission
    • Participation Guidelines
    • Data Management Plan
    • Research Targets
    • Timeline
  • News
  • Results
    • RNA Results
    • Protein Results
    • Screening RNA
    • Screening Protein
  • Publications
  • Participants
    • Core Team
    • Research Partners
    • Lab Members
    • Corporate Partners
    • Governance Board

Publications

DOI

Nature Communications (2020) 11:6041

Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates

A. Savastano, A. Ibáñez de Opakua, M. Rankovic & M. Zweckstetter

The etiologic agent of the Covid-19 pandemic is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral membrane of SARS-CoV-2 surrounds a helical nucleocapsid in which the viral genome is encapsulated by the nucleocapsid protein. The nucleocapsid protein of SARS-CoV-2 is produced at high levels within infected cells, enhances the efficiency of viral RNA transcription, and is essential for viral replication. Here, we show that RNA induces cooperative liquid–liquid phase separation of the SARS-CoV-2 nucleocapsid protein. In agreement with its ability to phase separate in vitro, we show that the protein associates in cells with stress granules, cytoplasmic RNA/protein granules that form through liquid-liquid phase separation and are modulated by viruses to maximize replication efficiency. Liquid–liquid phase separation generates high-density protein/RNA condensates that recruit the RNA-dependent RNA polymerase complex of SARS-CoV-2 providing a mechanism for efficient transcription of viral RNA. Inhibition of RNA-induced phase separation of the nucleocapsid protein by small molecules or biologics thus can interfere with a key step in the SARS-CoV-2 replication cycle.

Funded by


Goethe Corona Fonds

DFG

Volkswagen Stiftung

Footer

Coordination

Prof. Dr. Harald Schwalbe (Coordinator)
Institut für Organische Chemie und Chemische Biologie
Zentrum für Biomolekulare Magnetische Resonanz

Johann Wolfgang Goethe-Universität
N160-3.13
Max-von-Laue-Strasse 7
D-60438 Frankfurt am Main

Contact us

++49 69 798 29737
schwalbe@nmr.uni-frankfurt.de

Twitter
 LOGS

Scientific Data Management powered by
Communication powered by
SIGNALS

Imprint | Privacy Policy

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT